MATERIAL SAFETY DATA SHEET

(Following Regulations (EC) No 1907/2006 & (EC) No 1272/2008)

MSDS Number: 104-0-GHS Date of First Issue: 09/2011 Date of Last Revision:

1. Identification of the product and of the company

IDENTIFICATION OF THE PRODUCT
Pyrobloc 1425, Pyrobloc 1260, Pyrofold M CERACHEM, Pyrofold M CERA
Z Blok CERA, Z Blok CERACHEM
Cera Folded Modules, Cera Module, Cera Spun Fibre, Cera stack Modules
Cerablanket, Cerachem Blanket, Cerachem Blown Fibre, CERACHEM Bulk
Cerachem chopped Spun Fibre, Cerachem Fiber, Cerachem Folded Modules
Cerachem L Blown Fibre, Cerachem L chopped Spun Fibre, Cerachem L Spun Fibre
Cerachem Module, Cerachem Spun Fibre, Cerachem stack Modules,
Cerachrome Blanket, Cerachrome chopped Fibre, Cerachrome Fibre, Cerachrome Module
Cerafibre, CERAWOOL Blanket, CERAWOOL Bulk,
Compound Module(Cz+Cr), Compound Module(Cz+Kaowool S)
G.O.M. 1260, G.O.M. 1400, G.O.M. 1600,
Kaowool, Kaowool S Alu-FM Blanket, Kaowool S Blanket, Kaowool S Blown Fibre,
Kaowool S chopped Blown Fibre, Kaowool S chopped Spun Fibre, Kaowool S FireMaster Blanket,
Kaowool S Module, Kaowool S Spun Fibre, Kaowool Unibloc Module,
Monomax Module System,
Pyro-Bloc, CR, Pyro-Bloc, R, Pyro-Bloc, ZR, Pyrolog, PyroLog 1425, PyroLog, CR, PyroLog, R,
Pyro-Log, ZR
Saber Bloc III CERA, Saber Bloc III CERACHEM,
SC Blanket 1260, SC Blanket 1400, SC Bulk 1260 D1, SC Bulk 1260 D2, SC Bulk 1400, SC Bulk 1400 D1
SC Bulk 1400 D2, SC Bulk 1260,
Z Blok 1260, Z Blok 1400, Z Blok 1600

These products contain Refractory Ceramic Fibres (RCF)/Alumino-silicate wools (ASW) ((RCF/ASW)).

Index Number: 650-017-00-8 of Annex VI
CAS number: 142844-00-6
CAS Name: Refractories, fibres, aluminosilicate

USE OF THE PRODUCT
Use of the products is restricted to professional users for application as thermal insulation, heat shields, heat containment, gaskets and expansion joints at temperatures up to 1400°C in industrial furnaces, ovens, kilns, boilers and other process equipment and in the aerospace and automotive industries. Products are not intended for direct sale to the general public

Uses Advised Against
Spraying of the product

IDENTIFICATION OF THE MANUFACTURER/SUPPLIER

Thermal Ceramics, A Division of Morganite Australia Pty. Ltd.
10 – 14 Toogood Ave, Beverley
South Australia, 5009 Australia
Telephone: 1800 467 858
Fax: 1800 467 850

Website: www.morganthermalceramics.com
Email: marketing.tt@morganplc.com
2. Hazards Identification

2.1 CHRONIC RESPIRATORY HEALTH EFFECTS
The International Agency for Research of Cancer (IARC), a scientific entity depending from the World Health Organization (WHO), has evaluated the possible health effect of RCF as follows:

- There is inadequate evidence in humans for the carcinogenicity of Refractory Ceramic Fibres.
- There is sufficient evidence in experimental animals for the carcinogenicity of refractory ceramic fibres.

IARC Overall evaluation: Refractory Ceramic Fibres are possibly carcinogenic to humans (group 2B)

This product is classified as hazardous according to the criteria of Safe Work Australia (SWA).

2.2 LABELLING ELEMENTS

The label used for all MTC RCF products has been designed in line with the GHS labelling requirements and MTC policy. Classification used to identify the type of GHS labelling is the EU classification system CLP 1b.

Hazard pictogram

GHS 08

Signal Word

Danger

Hazard Statements

May cause cancer by inhalation
(H350i)

Precautionary statements

Do not handle until all safety instructions have been read and understood. (P202)

Use personal protective equipment as required. (P281)

In Australia RCF is classified with the following R & S phrases

Risk Phrase

R49 May cause cancer by inhalation

Safety Phrases

S53 Avoid exposure-obtain special instruction before use
S45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

Refer to Safe Work Australia Code of Practice for SMF, [NOHSC: 2006 (1990)].

2.3 OTHER HAZARDS WHICH DO NOT RESULT IN CLASSIFICATION

Mild mechanical irritation to skin, eyes and upper respiratory system may result from exposure. These effects are usually temporary.

3. Composition / information on ingredients

1 IARC Monographs on the evolution of carcinogenic risks to humans – Volume 81 Man-Made Vitreous Fibres 2002
DESCRIPTION
These products in the form of bulk, blanket (pre-sized or not), felt, strip, die-cut and module, bloc, log (encapsulated or not) are made of refractory ceramic fibres (Refractories, fibres, aluminosilicate).

TABLE 1

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>CAS NUMBER</th>
<th>% by weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refractory Ceramic Fibres</td>
<td>142 844-00-6</td>
<td>100</td>
</tr>
</tbody>
</table>

Composition:
* CAS definition: Chemical composition of Refractory Ceramic Fibres (RCF/ASW): SiO$_2$ 45-60% - Al$_2$O$_3$ 28-55%, ZrO$_2$<18%

None of the components are radioactive under the terms of European Directive Euratom 96/29

4. First-aid measures

SKIN:
Handling of this material may generate mild mechanical temporary skin irritation. If this occurs, rinse affected areas with water and wash gently. Do not rub or scratch exposed skin.

EYES:
In case of eye contact flush abundantly with water; have eye bath available. Do not rub eyes.

NOSE AND THROAT:
If these become irritated move to a dust free area, drink water and blow nose.

If symptoms persist, seek medical advice.

5. Fire-fighting measures

Non-combustible products, class of reaction to fire is zero.
Packaging and surrounding materials may be combustible. Use extinguishing agent suitable for surrounding combustible materials.

6. Accidental release measures

6.1 PERSONAL PRECAUTIONS, PROTECTIVE EQUIPMENT AND EMERGENCY PROCEDURES
Where abnormally high dust concentrations occur, provide workers with appropriate protective equipment as detailed in section 8.

Restrict access to the area to a minimum number of workers required. Restore the situation to normal as quickly as possible.

6.2 ENVIRONMENTAL PRECAUTIONS
Prevent further dust dispersion for example by dampening the materials
Do not flush spillage to drain.
Check for local regulations, which may apply.

6.3 METHODS AND MATERIALS FOR CONTAINMENT AND CLEAN UP
Pick up large pieces and use a vacuum cleaner fitted with a high efficiency filter (HEPA)
If sweeping is used, ensure that the area is wetted down first.
Do not use compressed air for clean up.
Do not allow to become windblown.

7. Handling and storage

7.1 PRECAUTIONS FOR SAFE HANDLING
Handling can be a source of dust emission and therefore the processes should be designed to limit the amount of handling. Whenever possible, handling should be carried out under controlled conditions (i.e., using dust exhaust system). Regular good housekeeping will minimise secondary dust dispersal.

7.2 CONDITIONS FOR SAFE STORAGE
Store in original packaging in dry area whilst awaiting use
Always use sealed and visibly labelled containers.
Avoid damaging containers.
Reduce dust emission during unpacking.
Emptied containers, which may contain debris, should be cleaned (see 6.3) before disposal or recycling.
Recyclable cardboard and/or plastic films are recommended for packaging.

7.3 SPECIFIC END USE
The main application of these products is as thermal insulation. Use of the products is restricted to professional users
Please refer to section 8 for further information on safe use

8. Exposure controls / personal protection

8.1 CONTROL PARAMETERS
Industrial hygiene standards and occupational exposure limits vary between countries and local jurisdictions. Check which exposure levels apply to your facility and comply with local regulations. If no regulatory dust or other standards apply, a qualified industrial hygienist can assist with a specific workplace evaluation including recommendations for respiratory protection.

Examples of national OELs (January 2011) are given in the table below. Thermal Ceramics recommend that where no regulatory limits are in place customers follow the NIOSH recommendations.

<table>
<thead>
<tr>
<th>Country</th>
<th>Exposure Limit</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>0.5 f/ml</td>
<td>Australian Safety & Compensation Council</td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>0.2 f/ml</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0.2 f/ml</td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>0.2 f/ml</td>
<td></td>
</tr>
</tbody>
</table>

Recommended Exposure Level (REL) 0.5 f/ml (TWA)

If regular monitoring results show an average fibre level above 0.25 f/ml, NIOSH recommends to take further action to reduce workplace dust levels, with an ultimate target of achieving 0.2 f/ml. Full information on the recommendations can be found in NIOSH document, Criteria for a Recommended Standard: Occupational Exposure to Refractory Ceramic Fibers (2006), see section 16 for internet reference.

8.2 EXPOSURE CONTROLS

8.2.1 APPROPRIATE ENGINEERING CONTROLS
Review your application(s) and assess situations with the potential for dust release.

Where practical, enclose dust sources and provide dust extraction at source.
Designate work areas and restrict access to informed and trained workers.
Use operating procedures that will limit dust production and exposure of workers.
Keep the workplace clean. Use a vacuum cleaner fitted with a HEPA filter; avoid using brooms and never use compressed air for clean up.

If necessary, consult an industrial hygienist to design workplace controls and practices. The use of products specially tailored to your application(s) will help to control dust. Some products can be delivered ready for use to avoid further cutting or machining. Some could be pre-treated or packaged to minimise or avoid dust release during handling. Consult your supplier for further details.

8.2.2 PERSONAL PROTECTIVE EQUIPMENT

Skin protection
Wear industrial leather gloves and work clothes, which are loose fitting at the neck and wrists. Soiled clothes should be cleaned to remove excess dust before being taken off (e.g. use vacuum cleaner, not compressed air). Each worker should be provided with two lockers in an appropriate changing and washing area. It is good hygiene practice to ensure work clothes are washed separately by the employer. Work clothes should not be taken home.

Eye protection
As necessary, wear goggles or safety glasses with side shields.

Respiratory protection
For dust concentrations below the applicable exposure limit value, RPE is not required but FFP2 respirators should be provided for use on a voluntary basis. For short term operations where excursions are less than ten times the applicable limit value, use FFP3 respirators. In case of higher concentrations or where the concentration is not known, please seek advice from your company and/or your supplier. You may also refer to the ECFIA code of practice available on ECFIA’s web site: www.ecfia.eu

Information and Training of workers

This should include:
The applications involving RCF/ASW-containing products;
The potential risk to health resulting from the exposure to fibrous dust;
The requirements regarding smoking, eating and drinking at the workplace;
The requirements for protective equipment and clothing;
The good working practices to limit dust release;
The proper use of protective equipment.

8.2.3 ENVIRONMENTAL EXPOSURE CONTROLS

RCF/ASW is inorganic, inert and stable and it is not soluble in water (solubility <1mg/litre) and as such does not pose a detrimental effect on the environment.

Processes involving the manufacturing or use of RCF/ASW should be filtered to minimise fibre emissions to air.

Waste RCF/ASW should be stored in closed containers and placed in too deep landfills, giving therefore little opportunity for release.

General good practice for spills and waste is to prevent products from being windblown, by covering and damping the waste materials. Contain spillages to prevent access to drain.

Refer to local or national applicable environmental standards for release to air water and soil. For waste, refer to section 13.
9. Physical and Chemical Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPEARANCE</td>
<td>White fibre/blanket</td>
</tr>
<tr>
<td>BOILING POINT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>FLASH POINT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>AUTOFLAMMABILITY</td>
<td>Not applicable</td>
</tr>
<tr>
<td>OXIDISING PROPERTIES</td>
<td>Not applicable</td>
</tr>
<tr>
<td>RELATIVE DENSITY</td>
<td>50-240 kg/m³</td>
</tr>
<tr>
<td>SOLUBILITY</td>
<td>Less than 1 mg/l</td>
</tr>
<tr>
<td>LENGTH WEIGHTED GEOMETRIC MEAN DIAMETER OF FIBER CONTAINED IN THE PRODUCT</td>
<td>1.3 - 4 µm</td>
</tr>
<tr>
<td>PARTITION COEFFICIENT</td>
<td>Not applicable</td>
</tr>
<tr>
<td>ODOUR</td>
<td>None</td>
</tr>
<tr>
<td>FIBRE MELTING POINT</td>
<td>> 1650°C</td>
</tr>
<tr>
<td>FLAMMABILITY</td>
<td>Not applicable</td>
</tr>
<tr>
<td>EXPLOSIVE PROPERTIES</td>
<td>Not applicable</td>
</tr>
<tr>
<td>VAPOUR PRESSURE</td>
<td>Not applicable</td>
</tr>
<tr>
<td>pH</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

10. Stability and reactivity

CONDITIONS OR MATERIALS TO AVOID
None

DECOMPOSITION PRODUCTS
Upon heating above 900°C for sustained periods, this amorphous material begins to transform to mixtures of crystalline phases. For further information please refer to Section 16.

11. Toxicological information

11.1 TOXICOGENICITY, METABOLISM AND DISTRIBUTION

11.1.1 BASIC TOXICOGENICITY
Exposure is predominantly by inhalation or ingestion. Man made vitreous fibres of a similar size to RCF/ASW have not been shown to migrate from the lung and/or gut and do not become located in other organs of the body.

11.1.2 HUMAN TOXICOLOGICAL DATA
In order to determine possible human health effects following RCF exposure, the University of Cincinnati has been conducting medical surveillance studies on RCF workers in the U.S.A. The Institute of Occupational Medicine (IOM) has conducted medical surveillance studies on RCF workers in European manufacturing facilities.

Pulmonary morbidity studies among production workers in Europe and the U.S.A. have demonstrated an absence of interstitial fibrosis. In the European study a reduction of lung capacity among smokers has been identified, however, based on the latest results in the U.S.A. study this reduction is no longer statistically significant.

A statistically significant correlation between pleural plaques and cumulative RCF exposure was evidenced in the USA longitudinal study.

The USA mortality study did not show evidence of increased lung tumour development either in the lung parenchyma or in the pleura.

11.2 INFORMATION ON TOXICOLOGICAL EFFECTS
- **Acute toxicity: short term inhalation**
 No data available: Short term tests have been undertaken to determine fibre (bio) solubility rather than toxicity; repeat dose inhalation tests have been undertaken to determine chronic toxicity and carcinogenicity.
- **Acute toxicity: oral**
 No data available: Repeated dose studies have been carried out using gavage. No effect was found.

- **Skin corrosion/irritation:**
 Not a chemical irritant according to test method OECD no. 404

- **Serious eye damage/irritation:**
 Not possible to obtain acute toxicity information due to the morphology and chemical inertness of the substance

- **Respiratory or skin sensitisation**
 No evidence from human epidemiological studies of any respiratory or skin sensitisation potential

- **Germ cell mutagenicity:**
 Method: In vitro micronucleus test
 Species: Hamster (CHO)
 Dose: 1-35 mg/ml
 - Routes of administration: In suspension
 - Results: Negative

- **Carcinogenicity:**
 Method: Inhalation. Multi-dose
 Species: Rat,
 Dose: 3 mg/m³, 9 mg/m³ and 16 mg/m³
 Routes of administration: Nose only inhalation
 Results: Fibrosis just reached significant levels at 16 and 9 mg/m³ but not at 3 mg/m³. None of the parenchymal tumour incidences were higher than the historical control values for this strain of animal.
 Method: Inhalation. Single dose
 Species: Rat
 Dose: 30 mg/m³
 Routes of administration: Nose only inhalation
 Results: Rats were exposed to a single concentration of 200 WHO fibres/ml specially prepared RCF for 24 months. High incidence of exposure-related pulmonary neoplasms (bronchoalveolar adenomas and carcinomas) was observed. A small number of mesotheliomas were observed in each of the fibre exposure groups (Mast et al 1995a).

 Method: Inhalation. Single dose
 Species: Hamster
 Dose: 30 mg/m³
 Routes of administration: Nose only inhalation
 Results: Hamsters were exposed to a single concentration of 260 WHO fibres/ml specially prepared RCF for 18 months and developed lung fibrosis, a significant number of pleural mesotheliomas (42/102) but no primary lung tumours (McConnell et al 1995).

 Method: Inhalation. Single dose
 Species: Rat
 Dose: RCF1: 130 F/ml and 50 mg/m³ (25% of non fibrous particles)
 RCF1a: 125 F/ml and 26 mg/m³ (2% of non fibrous particles)
 Routes of administration: Nose only inhalation
 Results: Rats were exposed to RCF1 and RCF1a for 3 weeks. The objective of the study was to compare lung retention and biological effects of the original RCF1 compared to RCF1a. The main difference of these 2 samples was the non fibrous particle content of respectively 25% versus 2%. The post treatment observation was 12 months. Alveolar clearance was barely retarded after RCF1A exposure. After RCF1 exposure, however, a severe retardation of clearance was observed. (Bellmann et al 2001)

 After intraperitoneal injection of ceramic fibres into rats in three experiments (Smith et al 1987, Pott et al 1987, Davis et al 1984), 6 mesotheliomas were found in the abdominal cavity in two studies,
while the third report (Pott et al 1987) had incomplete histopathology. Only a few mesotheliomas were found in the abdominal cavity of hamsters after intraperitoneal injection in one experiment (Smith et al 1987). However, the ceramic fibres tested were of relatively large diameter. When rats and hamsters were exposed via intraperitoneal injection, tumour incidence was related to fibre length and dose (Smith et al 1987, Pott et al 1987, Miller et al 1999, Pott et al 1989). *(From SCOEL (EU Scientific Committee on Occupational Exposure Limits) publication SCOEL/SUM/165, October 2010)*

- **Reproductive toxicity:**
 - Method: Gavage
 - Species: Rat
 - Dose: 250mg/kg/day
 - Routes of administration: Oral
 - Results: No effects were seen in an OECD 421 screening study. There are no reports of any reproductive toxic effects of mineral fibres. Exposure to these fibres is via inhalation and effects seen are in the lung. Clearance of fibres is via the gut and the faeces, so exposure of the reproductive organs is extremely unlikely.

 - STOT-Single exposure: Not applicable
 - STOT-Repeated exposure: Not applicable
 - Aspiration hazard: Not applicable

IRRITANT PROPERTIES

Negative results have been obtained in animal studies (EU method B 4) for skin irritation. Inhalation exposures using the nose only route produce simultaneous heavy exposures to the eyes, but no reports of excess eye irritation exist. Animals exposed by inhalation similarly show no evidence of respiratory tract irritation.

Human data confirm that only mechanical irritation, resulting in itching, occurs in humans. Screening at manufacturers’ plants in the UK has failed to show any human cases of skin conditions related to fibre exposure.

12. Ecological information

These products are insoluble materials that remain stable over time and are chemically identical to inorganic compounds found in the soil and sediment, they remain inert in the natural environment.

No adverse effects of this material on the environment are anticipated.

13. Disposal considerations

To prevent waste materials from becoming airborne during waste storage, transportation and disposal, a covered container or plastic bagging is recommended.

Waste from these materials (even after use above 900degC) is not classified as hazardous waste and may generally be disposed of at a normal tipping site which has been licensed for the disposal of industrial waste. Taking into account any possible contamination during use, which may be classified as hazardous, expert guidance should be sought.

Such a waste is normally dusty (unless wetted) and so should be properly bagged and clearly labelled for disposal. At some tip sites dusty waste may be treated differently in order to ensure they are dealt with promptly and to avoid them being windblown. Check for national and/or regional regulations to identify all applicable disposal requirements.
14. Transport information

Not classified as dangerous goods under relevant international transport regulations (Australian DG Code, ADR, RID, IATA, and IMDG).
Ensure that dust is not windblown during transportation.

<table>
<thead>
<tr>
<th>UN Number</th>
<th>None Allocated</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG Class</td>
<td>None Allocated</td>
</tr>
<tr>
<td>Subsidiary risk(s)</td>
<td>None Allocated</td>
</tr>
<tr>
<td>Packing Group</td>
<td>None Allocated</td>
</tr>
<tr>
<td>Hazchem Code</td>
<td>None Allocated</td>
</tr>
</tbody>
</table>

Definitions:

- **ADR**: Transport by road, council directive 94/55/EC
- **IMDG**: Regulations relating to transport by sea
- **RID**: Transport by rail, Council Directive 96/49/EC
- **ICAO/IATA**: Regulations relating to transport by air
- **ADN**: European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

15. Regulatory information

The International Agency for Research on Cancer (IARC) confirmed in October 2001 that Group 2B (possible human carcinogen based on sufficient evidence of carcinogenicity in animals but inadequate evidence in humans) continues to be the appropriate classification for refractory ceramic fibre.

INFORMATION FOR RCF USERS EXPORTING TO EUROPE

Under European Regulation REACH there are additional obligations for importers of RCF containing products
RCF are classified in the European Union as a carcinogenic substance CLP 1B. On the 13th of January 2010 ECHA has updated the candidate list for authorisation (Annexe XV of the REACH regulation) and has added 14 new substances in this list including Refractory Ceramic Fibres and zirconia Refractory Ceramic Fibres.
As a consequence, EU (European Union) or EEA (European Economical Area) suppliers of articles which contain Refractory Ceramic Fibres and zirconia Refractory Ceramic Fibres in a concentration above 0.1% (w/w) have an obligation to provide information, available to them, to their customers or upon a request from an end user, within 45 days of the receipt of the request, on the supply of RCF containing articles.. This information must ensure safe use of the article and as a minimum contain the name of the substance. See section 16 for internet reference containing further information.

16. Other information

ADDITIONAL INFORMATION AND PRECAUTIONS TO BE CONSIDERED UPON REMOVAL OF AFTER SERVICE MATERIAL

As produced, all Refractory Ceramic Fibres are vitreous (glassy) materials which, upon continued exposure to elevated temperatures (above 900°C), may devitrify. The occurrence and extent of crystalline phase formation is dependent on the duration and temperature of exposure, fibre chemistry and/or the presence of fluxing agents. The presence of crystalline phases can be confirmed only through laboratory analysis of the “hot-face” fibre.
IARC’s evaluation of crystalline silica states “Crystalline silica inhaled in the form of quartz or cristobalite from occupational sources is carcinogenic to humans (Group 1)” and additionally mentioned “in making the overall
evaluation, the Working Group noted that carcinogenicity in humans was not detected in all industrial circumstances studied...

As only a thin layer of the insulation (hot face side) is exposed to high temperatures, respirable dust generated during removal operations does not contain detectable levels of crystalline silica (CS).

In applications where the material is heat soaked, duration of heat exposure is normally short and a significant devitrification allowing CS to build up does not occur. This is the case for waste mould casting for instance.

Toxicological evaluation of the effect of the presence of CS in artificially heated RCF/ASW material has not shown any increased toxicity in vitro.
The lack of toxicological effects may be explained by the following factors;
Increased brittleness of fibres after service life, favours fast fibre translocation through macrophage.
Microcrystals, including crystalline silica, are embedded in the glass structure of the fibre and are therefore not biologically available. The IARC evaluation as provided in Monograph 68 is not relevant as CS is not biologically available in after-service RCF/ASW.

High concentrations of fibres and other dusts may be generated when after-service products are mechanically disturbed during operations such as wrecking. Therefore MTC recommends:
 a) control measures are taken to reduce dust emissions;
 b) all personnel directly involved wear an appropriate respirator to minimise exposure; and
 c) Compliance with local regulatory limits.

SPRAYING
ECFIA recommends that this fibre should not be used for spraying

NOTE
This Safety Data Sheet was originally produced in English and has subsequently been translated into other languages; whilst every effort has been made to make this an accurate translation, please be aware that technical terms do not always translate correctly. The English version should always be considered as the reference version.

FURTHER INFORMATION
Further information can be found on
http://www.thermalceramics.com/site.asp?siteid=146&pageid=152
http://www.cdc.gov/niosh/docs/2006-123/
http://www.ecfia.eu/

TECHNICAL DATA SHEETS
For more information on individual products please see the relevant technical data sheet listed below:
Product Datasheet Code

Revision summary
1st Version of new GHS SDS

NOTICE:
The information presented herein is based on data considered to be accurate as of the date of preparation of this Material Safety Data Sheet. However, safe as provided by law, no warranty or representation, express or implied, is made as to the accuracy or completeness of the foregoing data and safety information, nor is any authorisation given or implied to practice any patented invention without a licence. In addition, no responsibility can be assumed by the vendor for any damage or injury resulting from abnormal use, from any failure to adhere to recommended practices, or from any hazards inherent in the nature of the product (however, this shall not act to restrict the vendor’s potential liability for negligence or under statute).